
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Sygma

Veridise Inc.
March 26, 2024

▶ Prepared For:

Sygma
https://buildwithsygma.com/

▶ Prepared By:

Shankara Pailoor
Tim Hoffman

▶ Contact Us: contact@veridise.com

▶ Version History:

March. 22, 2024 V1
March. 04, 2024 Draft

© 2024 Veridise Inc. All Rights Reserved.

https://buildwithsygma.com/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-CHAIN-VUL-001: Missing subgroup check on public keys 8
4.1.2 V-CHAIN-VUL-002: Missing check that the participation sum is greater

than threshold . 9
4.1.3 V-CHAIN-VUL-003: Centralization Risk in Bridge 10
4.1.4 V-CHAIN-VUL-004: State Root Verification in Spectre Proxy is Vulnerable

to Preimage Attack . 11
4.1.5 V-CHAIN-VUL-005: Ineffective concurrency lock 12
4.1.6 V-CHAIN-VUL-006: Aggregation Logic Could Reject Valid Signatures . 14
4.1.7 V-CHAIN-VUL-007: Sha256_wide digest assumes input length to be

multiple of 4 . 15
4.1.8 V-CHAIN-VUL-008: Sha256_wide digest panics when input has more

than 64 elements . 16
4.1.9 V-CHAIN-VUL-009: Missing Address(0) check in Router and Bridge

constructors . 17
4.1.10 V-CHAIN-VUL-010: transferHashes map written to but not read from . 18
4.1.11 V-CHAIN-VUL-011: Fee payout susceptible to wasted gas cost 19
4.1.12 V-CHAIN-VUL-012: Missing Address(0) check in renounceAdmin() in

BasicFeeHandler . 21
4.1.13 V-CHAIN-VUL-013: Using std::env::set_var is unsafe 22
4.1.14 V-CHAIN-VUL-014: Integer casts may silently truncate 24
4.1.15 V-CHAIN-VUL-015: X-Coordinate Aggregation could yield point at infinity 26
4.1.16 V-CHAIN-VUL-016: Missing Input Validation 27
4.1.17 V-CHAIN-VUL-017: ssz_merkleize_chunks crashes if sync committee size

is not a power of 2 . 28
4.1.18 V-CHAIN-VUL-018: Loss of precision due to floating point log2 30
4.1.19 V-CHAIN-VUL-019: Maintainability Issues 31
4.1.20 V-CHAIN-VUL-020: Gas Optimizations 33
4.1.21 V-CHAIN-VUL-021: Save gas in revert scenarios by using custom errors 36
4.1.22 V-CHAIN-VUL-022: Users can lose funds due to internal decimals con-

version . 37
4.1.23 V-CHAIN-VUL-023: getRoleMemberIndex() result is off by 1 38

Veridise Audit Report: Sygma © 2024 Veridise Inc.

4.1.24 V-CHAIN-VUL-024: Handle empty input to poseidon_hash_fq_array . . 39

5 Fuzz Testing 41
5.1 Methodology . 41
5.2 Functions Fuzzed . 41

Executive Summary 1
From Jan. 22, 2024 to Feb. 26, 2024, Sygma engaged Veridise to review the security of Spectre,
their ZK coprocessor designed to verify block headers from Ethereum’s Beacon Chain, as well
as sygma-x-solidity, their cross-chain bridge. The review covered the Halo2 circuits in Spectre
as well as the smart contracts in sygma-x-solidity. Veridise conducted the assessment over 10
person-weeks, with 2 engineers reviewing code over 5 weeks on commits ba3850e and 609ca8b
for the Spectre and sygma-x-solidity repositories respectively. The auditing strategy involved a
tool-assisted analysis of the repositories performed by Veridise engineers as well as extensive
manual auditing.

Code assessment. The Sygma developers provided the source code of the Spectre circuits
and sygma-x-solidity contracts for review. The Spectre circuits were written using Axiom, a
popular library wrapper around Halo2, and were designed to provide the same functionality
as the circuits from the Telepathy protocol, which were written in Circom. As such, Veridise
auditors were able to reuse the documentation from Telepathy’s website, along with prior audit
reports on the Telepathy code base, as a starting point. While the sygma-x-solidity GitHub
repository did not contain detailed README information, Veridise auditors did find relevant
documentation about its architecture and design decisions on the Sygma website.

Both repositories contained test suites which exercised the basic functionality of the code bases.
In the Spectre repository, the tests mainly ensured the functional correctness of the witness
generator and circuits. In particular, the Spectre tests made sure that the witness generator
correctly performed public key aggregation and generated proofs that satisfied the constraints.
Veridise auditors did not find any tests which checked that the constraints ruled out incorrect
witnesses, and recommend the developers add some of these negative test cases.

Summary of issues detected. The audit uncovered 24 issues, 2 of which are assessed to be
of high or critical severity by the Veridise auditors. V-CHAIN-VUL-001 details a critical bug
in Spectre where the developers forgot to check whether the public keys passed in lie on the
BLS12-381 curve. This would permit an attacker to pass in points that sum to a public key
they control, allowing them to forge signatures. V-CHAIN-VUL-002 was an issue in Spectre
where the developers did not validate that at least two thirds of the validators signed the
block header. This issue would allow a malicious validator to forge signatures by setting the
number of participants to one when generating the proof. The Veridise auditors also identified
3 medium-severity issues, including V-CHAIN-VUL-004 in sygma-x-solidity where an attacker
could apply a second-preimage attack during a Merkle proof to set a non-canonical state root.
Veridise auditors also found 8 warnings and 10 informational findings. The Sygma developers
acknowledged all the issues and have started generating fixes for them.

Recommendations. After auditing the protocol, the auditors had a few suggestions to
improve Sygma. In particular, the READMEs of the repositories could be improved to include
documentation (or links to documentation) about the code base. Currently, they only describe

Veridise Audit Report: Sygma © 2024 Veridise Inc.

https://github.com/ChainSafe/Spectre
https://ethereum.org/en/roadmap/beacon-chain/
https://github.com/sygmaprotocol/sygma-x-solidity
https://docs.axiom.xyz/
https://docs.telepathy.xyz/telepathy-protocol/overview
https://docs.buildwithsygma.com/architecture/
https://electriccoin.co/blog/new-snark-curve/
https://flawed.net.nz/2018/02/21/attacking-merkle-trees-with-a-second-preimage-attack/

2 1 Executive Summary

how to build each codebase and run the tests. The code base could additionally benefit from
adding more test cases in both repositories to increase the code coverage. The test suites should
include unit tests for individual functions or components as well as end-to-end tests for both
scenarios that are expected to succeed and scenarios that are expected to fail due to access
restrictions, etc. Supplementing testing with a fuzzer like afl.rs would be helpful to check the
functional correctness of different components like public key aggregation and Poseidon/Sha256
hashing. In this audit, fuzz testing of the Sha256 and Poseidon implementations found four issues
described in V-CHAIN-VUL-007, V-CHAIN-VUL-008, V-CHAIN-VUL-017, and V-CHAIN-VUL-
024.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

https://crates.io/crates/afl

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Spectre ba3850e Rust Halo2

sygma-x-solidity 609ca8b Solidity EVM-compatible chains

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Jan. 22 - Feb. 26, 2024 Manual & Tools 2 10 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Fixed Acknowledged
Critical-Severity Issues 2 2 2
High-Severity Issues 0 0 0
Medium-Severity Issues 3 2 3
Low-Severity Issues 1 1 1
Warning-Severity Issues 8 7 8
Informational-Severity Issues 10 9 10
TOTAL 24 21 24

Table 2.4: Category Breakdown.

Name Number
Logic Error 9
Data Validation 7
Gas Optimization 5
Maintainability 2
Centralization Risk 1

Veridise Audit Report: Sygma © 2024 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Spectre, Sygma’s ZK coprocessor,
as well as sygma-x-solidity, which contained the on-chain components of their cross-chain
bridge implementation. For each codebase, we sought to answer a distinct set of questions.

For Spectre:

▶ Does the Spectre protocol allow attackers to forge signatures?
▶ Can malicious users construct any denial-of-service attacks? In particular, can malicious

users prevent benign users from verifying valid proofs?
▶ Do the circuits validate the Beacon Chain headers according to the validator specifications?
▶ Do the circuits have any common ZK vulnerabilities such as being underconstrained or

overconstrained?

For sygma-x-solidity:

▶ Does the bridge implementation make sure that users cannot deposit money into a target
chain without first locking funds in the source chain?

▶ Are the on-chain components vulnerable to common vulnerabilities such as re-entrancy
attacks?

▶ Can malicious users perform any denial-of-service attacks on the bridge? In particular,
can users prevent any bridge transactions from executing successfully?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. This tool is designed to find instances of common
smart contract vulnerabilities, such as re-entrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We used afl.rs (a Rust frontend for AFLplusplus) to perform
fuzz testing on Spectre’s EndianConversions, CommitteeUpdateCircuit, and ssz_merkle
implementations. We also performed differential fuzzing on the implementations of the
Sha256 and Poseidon hash functions, using pre-existing implementations as oracles.

Scope.The scope of the audit consisted of all code in the Spectre and sygma-x-solidity repositories.
We note that the Spectre repository implemented its circuits using Axiom, making extensive
use of halo2-lib functions. Our audit assumed those functions were implemented correctly.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md
https://crates.io/crates/afl

6 3 Audit Goals and Scope

Methodology. Since the Spectre protocol is intended to copy the functionality of the Telepathy
protocol, Veridise auditors reviewed prior audit reports of Telepathy. In particular, any protocol
level bugs found in Telepathy were bugs that could be present in the Spectre implementation.
For the sygma-x-solidity codebase, Veridise auditors reviewed Sygma’s online documentation
detailing the overall architecture of the bridge.

They then began a manual audit of the code assisted by both static analyzers and automated
testing. During the audit, the Veridise auditors regularly met with the Sygma developers to ask
questions about the code. Furthermore, Veridise auditors communicated with Sygma developers
over Telegram to discuss issues and fixes between weekly meetings.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2024 Veridise Inc. Veridise Audit Report: Sygma

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-CHAIN-VUL-001 Missing subgroup check on public keys Critical Fixed
V-CHAIN-VUL-002 Missing check that the participation sum is gre. . . Critical Fixed
V-CHAIN-VUL-003 Centralization Risk in Bridge MediumAcknowledged
V-CHAIN-VUL-004 State Root Verification in Spectre Proxy is Vul. . . Medium Fixed
V-CHAIN-VUL-005 Ineffective concurrency lock Medium Fixed
V-CHAIN-VUL-006 Aggregation Logic Could Reject Valid Signatures Low Fixed
V-CHAIN-VUL-007 Sha256_wide digest assumes input length to be m. . . Warning Fixed
V-CHAIN-VUL-008 Sha256_wide digest panics when input has more t. . . Warning Fixed
V-CHAIN-VUL-009 Missing Address(0) check in Router and Bridge c. . . Warning Fixed
V-CHAIN-VUL-010 transferHashes map written to but not read from Warning Fixed
V-CHAIN-VUL-011 Fee payout susceptible to wasted gas cost WarningAcknowledged
V-CHAIN-VUL-012 Missing Address(0) check in renounceAdmin() in . . . Warning Fixed
V-CHAIN-VUL-013 Using std::env::set_var is unsafe Warning Fixed
V-CHAIN-VUL-014 Integer casts may silently truncate Warning Fixed
V-CHAIN-VUL-015 X-Coordinate Aggregation could yield point at i. . . Info Fixed
V-CHAIN-VUL-016 Missing Input Validation Info Fixed
V-CHAIN-VUL-017 ssz_merkleize_chunks crashes if sync committee . . . Info Fixed
V-CHAIN-VUL-018 Loss of precision due to floating point log2 Info Fixed
V-CHAIN-VUL-019 Maintainability Issues Info Fixed
V-CHAIN-VUL-020 Gas Optimizations Info Partially Fixed
V-CHAIN-VUL-021 Save gas in revert scenarios by using custom er. . . Info Fixed
V-CHAIN-VUL-022 Users can lose funds due to internal decimals c. . . Info Fixed
V-CHAIN-VUL-023 getRoleMemberIndex() result is off by 1 Info Fixed
V-CHAIN-VUL-024 Handle empty input to poseidon_hash_fq_array Info Fixed

Veridise Audit Report: Sygma © 2024 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-CHAIN-VUL-001: Missing subgroup check on public keys

Severity Critical Commit ba3850e
Type Data Validation Status Fixed

File(s) lightclient-circuits/src/committee_update_circuit.rs

Location(s) synthesize()
Confirmed Fix At e2a495e

In the Spectre protocol, a step operation is meant to add a new block header from the Beacon
chain to the target chain. A key part of this operation is checking that the Ethereum sync
committee signed the headers. This is done via zero knowledge proofs.

In particular, the proof needs to do the following steps:

1. Ensure the supplied keys are the same as the sync committee’s.
2. Sum the keys to derive an aggregated public key
3. Verify the signature of the headers.

Currently the protocol does not enforce (1). In particular, it does not ensure that the supplied
keys are points on the curve let alone the same as the committees. The protocol only ensures that
the supplied keys have the same x-coordinates as the sync committee. As a result, a malicious
actor has complete freedom in their choice of y-coordinates. As described in the document
here, if the attacker has complete freedom in choice of y-coordinates, then they can ensure the
aggregated key corresponds to a private key they control. Thus, it would allow them to forge
signatures.

Impact Without checking that the public keys are valid points in the subgroup, then attackers
could forge signatures.

Recommendation First, we recommend that the Spectre team ensure that the public keys lie
on the curve. This can be done by changing assign_point_unchecked in aggregate_pubkeys to
assign_point.

However, we don’t believe this fix is sufficient because for each x coordinate, the attacker still
has the freedom to choose (x, y) or (x, -y) for the corresponding y coordinate as well as the
participation bit. Under this condition, it is not clear whether the attacker can select participation
bits and y-coordinates in such a way that the aggregated sum is a point for which they can
recover the corresponding secret key.

The Spectre team suggested updating the rotate circuit to commit each public key’s x-coordinate
along with its sign. Such a change will ensure that the difficulty of forging signatures is as hard
as solving discrete log efficiently. Thus, we support the Spectre team making that change.

Developer Response Fixed in commit e2a495eb585f45c92fcce48d171aa68c789e8764

© 2024 Veridise Inc. Veridise Audit Report: Sygma

https://hackmd.io/EjA9p_InTMGExACCAyzIOw?both

4.1 Detailed Description of Issues 9

4.1.2 V-CHAIN-VUL-002: Missing check that the participation sum is greater than
threshold

Severity Critical Commit ba3850e
Type Logic Error Status Fixed

File(s) contracts/src/Spectre.sol

Location(s) step()
Confirmed Fix At a430cae

The standard way for light clients to check whether to accept a signed header from the Beacon
chain is to determine if two thirds of the committee signed it. If no headers have been propagated
for a while that meet such a threshold, then clients typically accept the one with the most
signatures. At a high level, it is important that clients only accept headers with many signatures
because otherwise any malicious committee member (or members) would be able to forge their
signature (or collude).

This is because a malicious committee member could set the participation bits to equal 1 for
their key and 0 for all other keys else. Thus, the aggregated key would be equal to their public
key, and since they have the corresponding secret key, they can forge signatures.

Impact Without any check that the participation sum is above a threshold larger than 1/2, it
is feasible for a minority of the committee members to collude and forge signatures that are
accepted by Spectre.

Recommendation We recommend that Spectre checks that the participation sum is larger
than 2/3’s of the committee size.

Developer Response Fixed in commit a430caeb3678582b73e3ee73b6f001bd9d1e75ca.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

10 4 Vulnerability Report

4.1.3 V-CHAIN-VUL-003: Centralization Risk in Bridge

Severity Medium Commit 609ca8b
Type Centralization Risk Status Acknowledged

File(s) contracts/utils/AccessControlSegregator.sol

Location(s) adminChangeAccessControl()
Confirmed Fix At N/A

The AccessControlSegregator is the module which manages access control for the Bridge, Router,
and Executor contracts. Access control is segregated on a per-function basis where for each
function, members are assigned roles including admin. One of the functions exposed by the
bridge includes the ability to change the segregator itself (see adminChangeAccessControl)! A
malicious or hacked admin for that function would be able to replace the segregator with a
contract they control, thereby compromising the bridge entirely.

Impact A malicious or hacked admin could change the access control module to something
they control and gain complete control over the bridge including draining all funds locked in
the bridge.

Recommendation We recommend decoupling the ability to change the access control segre-
gator from the segregator itself. One option is to have a governance organization determine
what module is set or a multi-sig account that manages the access control.

Developer Response They are using a multi-sig currently. In the future, this will change to a
governance contract.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

4.1 Detailed Description of Issues 11

4.1.4 V-CHAIN-VUL-004: State Root Verification in Spectre Proxy is Vulnerable to
Preimage Attack

Severity Medium Commit 609ca8b
Type Logic Error Status Fixed

File(s) contracts/proxies/SpectreProxy.sol

Location(s) verifyMerkleBranch()
Confirmed Fix At 6e1d38d

The Spectre proxy verifyMerkleBranch(), shown below, takes as input a state root hash
𝐻(denoted by the parameter leaf), a merkle proof 𝑃1 , . . . , 𝑃𝑛 , and the executor root 𝑅 and
verifies the corresponding merkle proof i.e, 𝑆ℎ𝑎256(𝑃𝑛 , 𝑆ℎ𝑎256(𝑃𝑛−1 , ..., 𝑆ℎ𝑎256(𝑃1 , 𝐻))) = 𝑅.
It uses the state root index to determine the order of the hashing i.e, the path in the tree.

1 function verifyMerkleBranch(
2 bytes32 leaf,
3 bytes32 root,
4 bytes[] calldata proof,
5 uint8 index
6) internal pure returns (bool) {
7 bytes32 value = leaf;
8

9 for (uint256 i = 0; i < proof.length; i++) {
10 if ((index / (2**i)) % 2 == 1) {
11 value = sha256(abi.encodePacked(proof[i], value));
12 } else {
13 value = sha256(abi.encodePacked(value, proof[i]));
14 }
15 }
16

17 return value == root;
18 }

Snippet 4.1: Definition of verifyMerkleBranch()

However, the code snippet does not perform any checks on the height of the tree. As such, this
snippet is vulnerable to a second pre-image attack whereby an attacker could pass a state root
that corresponds to an intermediate node along with a shortened proof.

The only usage of this function is in step where the leaf node is passed in by the end user.

Impact An attacker could set the state root to be an intermediate node or another leaf in the
tree (if the tree is not balanced).

Recommendation We recommend performing a check on the length of the proof.

Developer Response This is fixed inhttps://github.com/sygmaprotocol/sygma-x-solidity/
pull/37

Veridise Audit Report: Sygma © 2024 Veridise Inc.

https://flawed.net.nz/2018/02/21/attacking-merkle-trees-with-a-second-preimage-attack/
https://github.com/sygmaprotocol/sygma-x-solidity/pull/37
https://github.com/sygmaprotocol/sygma-x-solidity/pull/37

12 4 Vulnerability Report

4.1.5 V-CHAIN-VUL-005: Ineffective concurrency lock

Severity Medium Commit ba3850e
Type Logic Error Status Fixed

File(s) prover/src/rpc.rs

Location(s) multiple
Confirmed Fix At https://github.com/ChainSafe/Spectre/pull/70

The prover sets up an RPC server with 2 handler functions, gen_evm_proof_committee_update_handler
and gen_evm_proof_sync_step_compressed_handler. Its state contains a tokio::sync::Semaphore

instance to limit the number of concurrent handler executions. The Semaphore.acquire_owned

() function returns a Result<OwnedSemaphorePermit, AcquireError> instance. If the permit is
successfully acquired, it is held for the lifetime of the wrapped OwnedSemaphorePermit instance.

In both handler functions, the OwnedSemaphorePermit is not stored to a local variable within the
function so its lifetime ends immediately and the permit is returned to the Semaphore before
executing the remainder of the function.

1 if let Err(e) = state.concurrency.clone().acquire_owned().await {
2 return Err(JsonRpcError::internal(format!(
3 "Failed to acquire concurrency lock: {}",
4 e
5)));
6 };

Snippet 4.2: Excerpt from gen_evm_proof_committee_update_handler

Impact The bodies of gen_evm_proof_committee_update_handler and gen_evm_proof_sync_step_compressed_handler

can be executed by an arbitrary number of threads concurrently. Without a limit, an attacker
could execute a DDoS attack on the RPC server.

Recommendation Utilize a structure like the following to perform all actions that must be
done while the permit is held:

1 match state.concurrency.clone().acquire_owned().await {
2 Err(e) => {
3 return Err(JsonRpcError::internal(format!(
4 "Failed to acquire concurrency lock: {}",
5 e
6)))
7 }
8 Ok(_permit) => {
9 // The permit is held in ’_permit’ for the scope of this block

10 }
11 }

Snippet 4.3: Recommended code structure

Add tests to with concurrent executions to cover this code.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

https://github.com/ChainSafe/Spectre/pull/70

4.1 Detailed Description of Issues 13

Developer Response Added a local variable to hold the permit until the end of the function
scope.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

14 4 Vulnerability Report

4.1.6 V-CHAIN-VUL-006: Aggregation Logic Could Reject Valid Signatures

Severity Low Commit ba3850e
Type Data Validation Status Fixed

File(s) lightclient-circuits/src/sync_step_circuit.rs

Location(s) aggregate_pubkeys()
Confirmed Fix At 2affa66

The sync_step_circuit aggregates the committee public keys using the following logic:

1 let rand_point = g1_chip.load_random_point::<G1Affine>(ctx);
2 let mut acc = rand_point.clone();
3 for (bit, point) in participation_bits
4 .iter()
5 .copied()
6 .zip(assigned_affines.iter_mut())
7 {
8 let sum = g1_chip.add_unequal(ctx, acc.clone(), point.clone(), true);
9 acc = g1_chip.select(ctx, sum, acc, bit);

10 }
11 let agg_pubkey = g1_chip.sub_unequal(ctx, acc, rand_point, false);

Snippet 4.4: Excerpt from sync_step_circuit()

The sum is computed using the function add_unequal which computes the sum of acc and point

and asserts that acc != point. However, it is not clear that it is sound to include this assertion
since it could be the case that acc equals point for a valid set of keys. In particular, if we have
committee keys with x-coordinates aG , bG and (a+b)G , then this logic would not be able to
perform the aggregation on those keys.

Impact This could reject valid committee signatures.

Recommendation We recommend performing a check if the keys are equal and to perform
doubling in that case.

Developer Response This is fixed in https://github.com/ChainSafe/Spectre/pull/63.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

https://github.com/ChainSafe/Spectre/pull/63

4.1 Detailed Description of Issues 15

4.1.7 V-CHAIN-VUL-007: Sha256_wide digest assumes input length to be multiple
of 4

Severity Warning Commit ba3850e
Type Data Validation Status Fixed

File(s) lightclient-circuits/src/gadget/crypto/sha256_wide.rs

Location(s) digest()
Confirmed Fix At 108cfc3

The Sha256ChipWide struct implements the digest() function to compute the SHA-256 hash of
the input data. If the length of the input given to the function is not a multiple of 4, the digest()

function will panic at the expression assigned_bytes[i..i + 4] with the message "range end

index X out of range for slice of length Y". The assigned_bytes vector is computed from
the input iterator and has the same length. The line that causes the panic is marked in the
following code snippet:

1 for r in 0..num_input_rounds {
2 for w in 0..(num_input_words - r * NUM_WORDS_TO_ABSORB) {
3 let i = (r * NUM_WORDS_TO_ABSORB + w) * 4;
4 let checksum = gate.inner_product(
5 builder.main(),
6 assigned_bytes[i..i + 4].to_vec(), <---- panic here
7 byte_bases.clone(),
8);
9 builder

10 .main()
11 .constrain_equal(&checksum, &blocks[r].word_values[w]);
12 }
13 }

Snippet 4.5: Excerpt from Sha256ChipWide::digest()

Impact Function will panic with an unhelpful error message.

Recommendation We recommend padding the input to be a multiple of 4 with zeros as is
standard.

Developer Response Applied the recommended fix.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

16 4 Vulnerability Report

4.1.8 V-CHAIN-VUL-008: Sha256_wide digest panics when input has more than 64
elements

Severity Warning Commit ba3850e
Type Data Validation Status Fixed

File(s) lightclient-circuits/src/gadget/crypto/sha256_wide.rs

Location(s) digest()
Confirmed Fix At 108cfc3

The Sha256ChipWide struct implements the digest() function to compute the SHA-256 hash
of the input data. If the length of the input given to the function is greater than 64, the
digest() function will panic at the expression blocks[r].word_values[w] with the message
"index out of bounds". The line that causes the panic is marked in the following code snippet:

1 for r in 0..num_input_rounds {
2 for w in 0..(num_input_words - r * NUM_WORDS_TO_ABSORB) {
3 let i = (r * NUM_WORDS_TO_ABSORB + w) * 4;
4 let checksum = gate.inner_product(
5 builder.main(),
6 assigned_bytes[i..i + 4].to_vec(),
7 byte_bases.clone(),
8);
9 builder

10 .main()
11 .constrain_equal(&checksum, &blocks[r].word_values[w]); <---- panic here
12 }
13 }

Snippet 4.6: Excerpt from Sha256ChipWide::digest()

Impact Function will panic with an unhelpful error message.

Recommendation Change the inner loop to iterate over 0..min(NUM_WORDS_TO_ABSORB, num_input_words

- r*NUM_WORDS_TO_ABSORB)

Developer Response Applied the recommended fix.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

4.1 Detailed Description of Issues 17

4.1.9 V-CHAIN-VUL-009: Missing Address(0) check in Router and Bridge
constructors

Severity Warning Commit 609ca8b
Type Data Validation Status Fixed

File(s) contracts/Router.sol, contracts/Bridge.sol

Location(s) constructor()
Confirmed Fix At e6b5cf8

Router.sol and Bridge.sol ’s constructors takes as input an accessControl address which
should correspond to access control contract. However, there is no validation that the address
has been set properly; if the deployer inadvertently passes in a 0 for the accessControl address,
then the contract will be rendered unusable.

As such, we recommend adding a check in the constructor to ensure the addresses are not 0.

Impact If deployer passes in an address of value 0 for the accessControl address, then the
deployed contract will be unusable.

Recommendation Add checks in constructors ensuring the addresses are not 0.

Developer Response This is fixed in commithttps://github.com/sygmaprotocol/sygma-x-solidity/
pull/39.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

https://github.com/sygmaprotocol/sygma-x-solidity/pull/39
https://github.com/sygmaprotocol/sygma-x-solidity/pull/39

18 4 Vulnerability Report

4.1.10 V-CHAIN-VUL-010: transferHashes map written to but not read from

Severity Warning Commit 609ca8b
Type Gas Optimization Status Fixed

File(s) contracts/Router.sol

Location(s) deposit()
Confirmed Fix At 6c3233c

The transferHashes map keeps track of all processed deposits and is written to in the deposit

function. However, it is not clear why this map is used since it is only ever written to but not
read from. If this map is not used elsewhere, then maintaining it will waste gas for the end
users. However, if it should be used elsewhere, then it is a bug.

Impact Excessive gas usage.

Recommendation Add a comment describing why this map is being maintained and who is
expected to use it.

Developer Response Added comment explaining usage.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

4.1 Detailed Description of Issues 19

4.1.11 V-CHAIN-VUL-011: Fee payout susceptible to wasted gas cost

Severity Warning Commit 609ca8b
Type Gas Optimization Status Acknowledged

File(s) multiple
Location(s) multiple

Confirmed Fix At N/A

The admin account distributes previously collected fees via the BasicFeeHandler.transferFee()

and PercentageERC20FeeHandlerEVM.transferERC20Fee() functions by passing in an array of fee
recipient address and an array of fee amounts. In both functions, for each pair of recipient and
fee amount, the relevant funds are transferred and a FeeDistributed event is emitted.

The BasicFeeHandler performs the transfer by using the low-level call function on the recipient
address.

1 for (uint256 i = 0; i < addrs.length; i++) {
2 (bool success,) = addrs[i].call{value: amounts[i]}("");
3 require(success, "Fee ether transfer failed");
4 emit FeeDistributed(address(0), addrs[i], amounts[i]);
5 }

Snippet 4.7: Excerpt from BasicFeeHandler.transferFee()

The PercentageERC20FeeHandlerEVM performs the transfer via ERC20Safe.releaseERC20() which
will ultimately call IERC20.transfer() on the tokenAddress with the relevant parameters.

1 for (uint256 i = 0; i < addrs.length; i++) {
2 releaseERC20(tokenAddress, addrs[i], amounts[i]);
3 emit FeeDistributed(tokenAddress, addrs[i], amounts[i]);
4 }

Snippet 4.8: Excerpt from PercentageERC20FeeHandlerEVM.transferERC20Fee()

In both cases, these transfers are performed in a loop within a single transaction. That means, if
any individual transfer call runs out of gas or otherwise causes the transaction to revert, all
transfers will be reverted. Similarly, if the admin simply attempts to initiate too many transfers
at once, the transaction may run out of gas and revert. When the transaction reverts, all gas
cost already incurred while processing the transaction is lost and will not be refunded to the
admin.

If the fee recipient address is a smart contract, it can simply run out of gas due to complex
operations or revert due to coding mistakes but there is also opportunity for a malicious contract
to intentionally revert in order to cause the admin account to waste gas.

Impact This approach requires the admin account to pay the transaction gas cost when
performing payouts and performing multiple payouts in a single transaction increases the
likelihood of the transaction reverting and the admin losing funds due to wasted gas costs.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

20 4 Vulnerability Report

Recommendation Perform payments in separate transactions or refactor payouts to a "pull"
system instead of a "push" system where recipients are required to initiate fee payouts.

Developer Response Admin is expected to properly validate data off-chain before making
the call on-chain.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

4.1 Detailed Description of Issues 21

4.1.12 V-CHAIN-VUL-012: Missing Address(0) check in renounceAdmin() in
BasicFeeHandler

Severity Warning Commit 609ca8b
Type Data Validation Status Fixed

File(s) contracts/handlers/fee/BasicFeeHandler.sol

Location(s) renounceAdmin()
Confirmed Fix At N/A

The BasicFeeHandler contract exposes a function called renounceAdmin where an existing admin
can renounce themselves as an admin and set another address as the admin. Only an existing
admin can successfully execute this function. As such, there should be a check on the new
address that it is not address 0, otherwise the admin role could be locked permanently if there
was only one admin.

Impact If an admin accidentally calls renounceAdmin with newAdmin = 0 then the adminship
can be locked.

Recommendation Add a check that newAdmin != 0.

Developer Response The recommendation was applied inhttps://github.com/sygmaprotocol/
sygma-x-solidity/pull/44.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

https://github.com/sygmaprotocol/sygma-x-solidity/pull/44
https://github.com/sygmaprotocol/sygma-x-solidity/pull/44

22 4 Vulnerability Report

4.1.13 V-CHAIN-VUL-013: Using std::env::set_var is unsafe

Severity Warning Commit ba3850e
Type Logic Error Status Fixed

File(s) multiple
Location(s) multiple

Confirmed Fix At abd30f2

Using the std::env::set_var() function is unsafe in multi-threaded programs. See https://doc.
rust-lang.org/nightly/std/env/fn.set_var.html#safety. The Spectre provermodule sets
up a multi-threaded RPC server that utilizes the lightclient_circuits module which contains
multiple calls to std::env::set_var() at the following locations:

1 fn set_var(&self) {
2 set_var(
3 "AGG_CONFIG_PARAMS",
4 serde_json::to_string(&self.params).unwrap(),
5);
6 set_var("LOOKUP_BITS", (self.params.degree - 1).to_string());
7 }

Snippet 4.9: Definition of AggregationConfigPinning::set_var()

1 fn set_var(&self) {
2 set_var(
3 "GATE_CONFIG_PARAMS",
4 serde_json::to_string(&self.params).unwrap(),
5);
6 set_var("LOOKUP_BITS", (self.params.k - 1).to_string());
7 }

Snippet 4.10: Definition of Eth2ConfigPinning::set_var()

1 set_var(
2 "AGG_CONFIG_PARAMS",
3 serde_json::to_string(&circuit.calculate_params(Some(10))).unwrap(),
4);

Snippet 4.11: Excerpt from AggregationCircuit::create_circuit()

1 set_var(
2 "GATE_CONFIG_PARAMS",
3 serde_json::to_string(¶ms).unwrap(),
4);

Snippet 4.12: Excerpt from ShaCircuitBuilder::calculate_params()

Impact Unrecoverable errors may occur when one thread calls std::env::set_var() and
another thread either writes or reads from the OS environment via some other means.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

https://doc.rust-lang.org/nightly/std/env/fn.set_var.html#safety
https://doc.rust-lang.org/nightly/std/env/fn.set_var.html#safety

4.1 Detailed Description of Issues 23

Recommendation Instead of environment variables, use a configuration file or Rust global
variables to store these modifiable configuration values.

Developer Response Refactored so that circuit configuration is serialized/deserialized from a
file.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

24 4 Vulnerability Report

4.1.14 V-CHAIN-VUL-014: Integer casts may silently truncate

Severity Warning Commit ba3850e
Type Logic Error Status Fixed

File(s) multiple
Location(s) multiple

Confirmed Fix At N/A

Rust provides the as operator to cast values to a different type. When performing casts
from a larger integer type to a smaller one, the value will silently truncate. For example,
a cast from u64 to u32 will keep the lower 32 bits of the number and drop the rest which
will change the value if the original value required more than 32 bits to represent. See:
https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics

The function Sha256ChipWide::digest uses the as operator to convert from u32 to u8. If the value
of av.value().get_lower_32() is larger than u8::MAX, the higher bits will be dropped, preserving
only the lower 8 bits of the value.

1 fn digest(
2 &self,
3 builder: &mut Self::CircuitBuilder,
4 input: impl IntoIterator<Item = QuantumCell<F>>,
5) -> Result<Vec<AssignedValue<F>>, Error> {
6 let assigned_bytes = input
7 .into_iter()
8 .map(|cell| match cell {
9 QuantumCell::Existing(v) => v,

10 QuantumCell::Witness(v) => builder.main().load_witness(v),
11 QuantumCell::Constant(v) => builder.main().load_constant(v),
12 _ => unreachable!(),
13 })
14 .collect_vec();
15 let binary_input: HashInput<u8> = HashInput::Single(
16 assigned_bytes
17 .iter()
18 .map(|av| av.value().get_lower_32() as u8)
19 .collect_vec()
20 .into(),
21);
22 ...

Snippet 4.13: Excerpt from Sha256ChipWide::digest()

There are also several locations that use the as operator to convert either from or to the usize

type whose bit-width depends on the target architecture: on a 32 bit target, it is 32 bits and on a
64 bit target, it is 64 bits.

Impact Truncation of values will go unnoticed and may lead to unexpected errors.

Recommendation Use the TryFrom trait instead of the as operator so truncation of the value
will be detected and must be handled appropriately, either by propagating the Result::Err or

© 2024 Veridise Inc. Veridise Audit Report: Sygma

https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics

4.1 Detailed Description of Issues 25

1 fn degree(&self) -> u32 {
2 self.params.k as u32
3 }

Snippet 4.14: Definition of Eth2ConfigPinning::degree() in
lightclient-circuits/src/util/circuit.rs

1 circuit.num_instance().first().map_or(0, |x| *x as u32)

Snippet 4.15: Excerpt from gen_evm_verifier() in prover/src/cli.rs

1 let sync_period = (bootstrap.header.beacon.slot as usize) /
EPOCHS_PER_SYNC_COMMITTEE_PERIOD;

Snippet 4.16: Excerpt from get_initial_sync_committee_poseidon() in test-utils/src/lib.rs

using a function like unwrap() or expect() to panic.

▶ Use u8::try_from(X).expect("truncated") instead of X as u8

▶ Use u32::try_from(X).expect("truncated") instead of X as u32

▶ Use usize::try_from(X).expect("truncated") instead of X as usize

Developer Response The recommendation was applied in all cases.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

26 4 Vulnerability Report

4.1.15 V-CHAIN-VUL-015: X-Coordinate Aggregation could yield point at infinity

Severity Info Commit ba3850e
Type Logic Error Status Fixed

File(s) lightclient-circuits/src/sync_step_circuit.rs

Location(s) aggregate_pubkeys()
Confirmed Fix At 98a9362

The function aggregate_pubkeys() sums all the x-coordinates of the committee public keys. It
does so using the following algorithm:

1 r <- sampleG1Point()
2 acc <- r
3 for (key : keys) {
4 assert acc != key.x
5 acc += key.x
6 }
7 acc <- acc - r;

Snippet 4.17: Pseudocode of excerpt from aggregate_pubkeys()

It initializes the sum to a random point on the curve and then iteratively adds key.x to the
sum and finally subtracts the random point. The assertion in the beginning prevents the sum
reaching to the point at infinity; however, the subtraction at the end could yield the point at
infinity if acc is r for example.

Impact If a bad r is sampled, then the resulting aggregated signature could be the point at
infinity which would likely result in the signature validation failing.

However, this is a very unlikely scenario.

Recommendation We would recommend having a special case which initializes the accumu-
lator to the first key and then perform the aggregation.

Developer Response The developers acknowledged the issue and fixed it in https://github.

com/ChainSafe/Spectre/pull/65.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

https://github.com/ChainSafe/Spectre/pull/65
https://github.com/ChainSafe/Spectre/pull/65

4.1 Detailed Description of Issues 27

4.1.16 V-CHAIN-VUL-016: Missing Input Validation

Severity Info Commit ba3850e
Type Gas Optimization Status Fixed

File(s) src/Spectre.sol

Location(s) step(), rotate()
Confirmed Fix At N/A

The purpose of the step and rotate calls is to facilitate validating and storing the block headers
of the beacon chain for each attestation period. Once a header has been verified for an attestation
period, there should be no reason to verify it again. As such, it only makes sense to perform
these operations when the attestation period is the latest.

The current implementation does not check whether the headers have already been verified for
a given period and so would allow users to potentially waste gas unnecessarily verifying proofs
on chain.

The implementation already keeps track of the latest attestation period in a variable called head

and should first check if the attestation period passed in is equal to head.

Impact By not checking if the headers for a given period have already been verified, this
implementation could unnecessarily waste gas

Recommendation We recommend that the implementation check if a header for a given
period has already been verified and revert if it has.

Developer Response The developers implemented the recommendation in the following pull
request: https://github.com/ChainSafe/spectre-contracts/pull/3

Veridise Audit Report: Sygma © 2024 Veridise Inc.

https://github.com/ChainSafe/spectre-contracts/pull/3

28 4 Vulnerability Report

4.1.17 V-CHAIN-VUL-017: ssz_merkleize_chunks crashes if sync committee size is
not a power of 2

Severity Info Commit ba3850e
Type Logic Error Status Fixed

File(s) lightclient-circuits/src/ssz_merkle.rs

Location(s) ssz_merkleize_chunks()
Confirmed Fix At 1a1f9c9

In ssz_merkleize_chunks() the vector of chunks is padded with values from ZERO_HASHES to
ensure the length is even so that hashing them by pairs later in the loop will succeed.

1 for depth in 0..height {
2 // Pad to even length using 32 zero bytes assigned as constants.
3 let len_even = chunks.len() + chunks.len() % 2;
4 let padded_chunks = chunks
5 .into_iter()
6 .pad_using(len_even, |_| ZERO_HASHES[depth].as_slice().into_constant())
7 .collect_vec();
8 ...
9 }

Snippet 4.18: Excerpt from ssz_merkleize_chunks()

The ZERO_HASHES array contains padding values for the first two levels. At the first level, when
processing the input chunks themselves, [0; 32] is used as the padding. For the second level,
the ZERO_HASHES array has the resulting SHA-256 hash for two chunks of [0; 32].

1 pub const ZERO_HASHES: [[u8; 32]; 2] = [
2 [0; 32],
3 [
4 245, 165, 253, 66, 209, 106, 32, 48, 39, 152, 239, 110, 211, 9, 151, 155, 67,

0, 61, 35,
5 32, 217, 240, 232, 234, 152, 49, 169, 39, 89, 251, 75,
6],
7];

Snippet 4.19: Definition of ZERO_HASHES

If the length of the input chunks is greater than 8 and not a power of 2, the ssz_merkleize_chunks

will attempt to read ZERO_HASHES[2] which does not exist resulting in a Rust runtime error.

All uses of ssz_merkleize_chunks in Spectre provide 5 chunks except for the use via CommitteeUpdateCircuit
::synthesize which provides eth_types::Spec::SYNC_COMMITTEE_SIZE chunks.

Impact

1. If an implementation of eth_types::Spec is used such that its SYNC_COMMITTEE_SIZE is not
a power of 2, the crash will occur.

2. Also, the precomputed ZERO_HASHES[1] values assume a SHA-256 hash is used. If the
HashInstructions implementation passed to ssz_merkleize_chunks is not SHA-256, the
end result would be computed incorrectly.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

4.1 Detailed Description of Issues 29

Recommendation

1. Ensure SYNC_COMMITTEE_SIZE is always a power of 2 for every implementation of Spec or
provide a mechanism to compute additional levels of the computed zero hash result on
demand.

2. Compute all levels beyond the [0; 32] initial level on demand using the given HashInstructions

implementation.

Developer Response

1. Added an assertion to explicitly check the input size.
2. Made it clear that SHA-256 hash is used to compute the ZERO_HASHES constants since the only

implementations of HashInstructions within scope are Sha256Chip and Sha256ChipWide.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

30 4 Vulnerability Report

4.1.18 V-CHAIN-VUL-018: Loss of precision due to floating point log2

Severity Info Commit ba3850e
Type Logic Error Status Fixed

File(s) lightclient-circuits/src/ssz_merkle.rs

Location(s) ssz_merkleize_chunks()
Confirmed Fix At f9d3e5f

To compute the root hash of the Merkle tree, the input chunks are hashed in pairs, reducing the
number of chunks by half. The process repeats until there is a single chunk. Thus the number of
iterations required to compute the root hash is log2(size). The ssz_merkleize_chunks function
computes this using the floating point f64::log2() function.

1 pub fn ssz_merkleize_chunks<F: Field, CircuitBuilder: CommonCircuitBuilder<F>>(
2 builder: &mut CircuitBuilder,
3 hasher: &impl HashInstructions<F, CircuitBuilder = CircuitBuilder>,
4 chunks: impl IntoIterator<Item = HashInputChunk<QuantumCell<F>>>,
5) -> Result<Vec<AssignedValue<F>>, Error> {
6 let mut chunks = chunks.into_iter().collect_vec();
7 let len_even = chunks.len() + chunks.len() % 2;
8 let height = (len_even as f64).log2().ceil() as usize;
9 for depth in 0..height {

10 ...
11 }

Snippet 4.20: Excerpt from ssz_merkleize_chunks

Impact At large values, this floating point calculation suffers from loss of precision and can
compute the height as 1 less than what it should be. Thus the loop would execute too few times
leaving more than one chunk in the vector and failing the assertion after the loop.

Recommendation Compute height of tree as chunks.len().next_power_of_two().ilog2()

with a special case for chunks.len() == 1 to execute the loop 1 time.

Developer Response Applied the recommended fix.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

4.1 Detailed Description of Issues 31

4.1.19 V-CHAIN-VUL-019: Maintainability Issues

Severity Info Commit ba3850e and 609ca8b
Type Maintainability Status Fixed

File(s) multiple
Location(s) multiple

Confirmed Fix At d428089

1. Unused import and using statements:

sygma-x-solidity contracts/Bridge.sol
▶ import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

▶ using ECDSA for bytes32;

sygma-x-solidity contracts/Executor.sol
▶ import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

▶ using ECDSA for bytes32;

sygma-x-solidity contracts/Router.sol
▶ import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

▶ using ECDSA for bytes32;

sygma-x-solidity contracts/utils/AccessControl.sol
▶ import "@openzeppelin/contracts/utils/Address.sol";

▶ using Address for address;

2. Unnecessary cast:

sygma-x-solidity contracts/Executor.sol
▶ IBridge(_bridge)

3. Function can be marked with pure:

sygma-x-solidity contracts/libraries/StorageProof.sol
▶ getStorageValue()

▶ getStorageRoot()

4. Function should be marked with private:

sygma-x-solidity contracts/ERC20Safe.sol
▶ _safeTransfer()

5. Modifier name is misleading because Router and Executor are also allowed:

sygma-x-solidity contracts/handlers/ERCHandlerHelpers.sol
▶ modifier onlyBridge()

6. Return value unnecessary because it’s always true and is unused in caller:

sygma-x-solidity contracts/Executor.sol
▶ function verify() returns (bool)

7. File is not used:

sygma-x-solidity contracts/libraries/RLPWriter.sol

8. Unused dependencies:

Spectre prover/Cargo.toml

Veridise Audit Report: Sygma © 2024 Veridise Inc.

32 4 Vulnerability Report

▶ anstyle = "1.0.0"

▶ futures = "0.3.29"

9. Unused annotations:

Spectre eth-types/src/lib.rs
▶ #![allow(incomplete_features)] (not used)
▶ #![feature(associated_type_bounds)] (feature not used)
▶ #![feature(associated_type_defaults)] (feature not used)
▶ #![feature(generic_const_exprs)] (feature not used)

Spectre lightclient-circuits/src/gadget/crypto/sha256_flex/compression.rs
▶ #[allow(clippy::too_many_arguments)] (argument count less than the default,

7)
Spectre lightclient-circuits/src/gadget/crypto/sha256_flex/gate.rs

▶ #[allow(clippy::type_complexity)] (function is within the default complexity
limit)

Spectre lightclient-circuits/src/lib.rs
▶ #![feature(int_roundings)] (stable since 1.73.0)
▶ #![feature(associated_type_bounds)] (feature not used)
▶ #![feature(stmt_expr_attributes)] (feature not used)
▶ #![feature(trait_alias)] (feature not used)
▶ #![feature(generic_arg_infer)] (feature not used)

Spectre prover/src/args.rs
▶ #[allow(clippy::large_enum_variant)] (Circuit is within the default threshold

of 200 bytes)
Spectre prover/src/lib.rs

▶ #![allow(incomplete_features)] (not used)
▶ #![feature(generic_const_exprs)] (feature not used)

Spectre prover/src/main.rs
▶ #![feature(associated_type_bounds)] (feature not used)

10. Use of magic constant:

Spectre lightclient-circuits/src/gadget/crypto/sha256_flex.rs
▶ Use of constant 9 should be documented or replaced with declaration with a

meaningful name

Impact Can make the code more complicated than necessary and more difficult to under-
stand.

Recommendation

▶ Remove unused/unnecessary code.
▶ Use the most restrictive access modifiers possible.
▶ Use clear and descriptive names.

Developer Response Recommendations were applied.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

4.1 Detailed Description of Issues 33

4.1.20 V-CHAIN-VUL-020: Gas Optimizations

Severity Info Commit 609ca8b
Type Gas Optimization Status Partially Fixed

File(s) multiple
Location(s) multiple

Confirmed Fix At N/A

1. The Executor.executeProposals() function reads from a certain index in the Proposal[]

memory proposals parameter multiple times in each iteration of the loop. A small savings
on gas cost in every iteration of the loop could be achieved by adding Proposal memory p

= proposals[i]; at the start of the loop and replacing all proposals[i] with p within the
remainder of the loop.

1 for (uint256 i = 0; i < proposals.length; i++) {
2 if (isProposalExecuted(proposals[i].originDomainID, proposals[i].depositNonce)) {
3 continue;
4 }
5 bytes32 stateRoot;
6 bytes32 storageRoot;
7 address routerAddress = _originDomainIDToRouter[proposals[i].originDomainID];
8

9 IStateRootStorage stateRootStorage = IStateRootStorage(_securityModels[proposals[i
].securityModel]);

10 stateRoot = stateRootStorage.getStateRoot(proposals[i].originDomainID, slot);
11 storageRoot = StorageProof.getStorageRoot(accountProof, routerAddress, stateRoot);
12 address handler = IBridge(_bridge)._resourceIDToHandlerAddress(proposals[i].

resourceID);
13 IHandler depositHandler = IHandler(handler);
14 verify(proposals[i], storageRoot);
15

16 usedNonces[proposals[i].originDomainID][proposals[i].depositNonce / 256] |=
17 1 << (proposals[i].depositNonce % 256);
18 try depositHandler.executeProposal(proposals[i].resourceID, proposals[i].data)

returns (
19 bytes memory handlerResponse
20) {
21 emit ProposalExecution(proposals[i].originDomainID, proposals[i].depositNonce,

handlerResponse);
22 } catch (bytes memory lowLevelData) {
23 emit FailedHandlerExecution(lowLevelData, proposals[i].originDomainID, proposals[

i].depositNonce);
24 usedNonces[proposals[i].originDomainID][proposals[i].depositNonce / 256] &=
25 ~(1 << (proposals[i].depositNonce % 256));
26 continue;
27 }
28 }

Snippet 4.21: Excerpt from Executor.executeProposals()

1. The Router.deposit() function has several conditions that can cause the function to revert.
To save on gas lost when these reverts occur, these conditions should appear as near
the start of the function as possible. Specifically, the if (handler == address(0)) could

Veridise Audit Report: Sygma © 2024 Veridise Inc.

34 4 Vulnerability Report

be moved earlier to avoid executing the feeHandler.collectFee() statement when the
function reverts.

1 if (destinationDomainID == _domainID) revert DepositToCurrentDomain();
2 address sender = _msgSender();
3 IFeeHandler feeHandler = _bridge._feeHandler();
4 if (address(feeHandler) == address(0)) {
5 require(msg.value == 0, "no FeeHandler, msg.value != 0");
6 } else {
7 // Reverts on failure
8 feeHandler.collectFee{value: msg.value}(
9 sender,

10 _domainID,
11 destinationDomainID,
12 resourceID,
13 depositData,
14 feeData
15);
16 }
17 address handler = _bridge._resourceIDToHandlerAddress(resourceID);
18 if (handler == address(0)) revert ResourceIDNotMappedToHandler();

Snippet 4.22: Excerpt from Router.deposit()

1. The ERCHandlerHelpers contract defines the withdraw() function as required to implement
the IERCHandler interface. It is used by the admin "to manually withdraw funds from ERC
safes." However, the definition here has an empty body. Functions with an empty body
should generally be removed or refactored to avoid scenarios that waste gas and may
mislead users.

1 function withdraw(bytes memory data) external virtual override {}

Snippet 4.23: Definition of ERCHandlerHelpers.withdraw()

1. The PermissionlessGenericHandler defines the setResource() function as required to
implement the IHandler interface. It is used by the admin to map a specific resource ID to
an IHandler instance and assign an ERC20 token address to the IHandler instance. Hence,
this function is not relevant in the context of transactions involving the native Ethereum
currency and is defined here with an empty body. Functions with an empty body should
generally be removed or refactored to avoid scenarios that waste gas and may mislead
users.

1 function setResource(bytes32 resourceID, address contractAddress, bytes calldata args
) external onlyBridge {}

Snippet 4.24: Definition of PermissionlessGenericHandler.setResource()

Impact see above

Recommendation

© 2024 Veridise Inc. Veridise Audit Report: Sygma

4.1 Detailed Description of Issues 35

1. Use a temporary local to avoid indexing the same memory multiple times.
2. All illegal state conditions that may cause a revert should be moved to the start of the

function.
3. Remove the function definition from ERCHandlerHelpers contract and make the contract

abstract.
4. Add a revert to the function body since the operation is not relevant to the native currency

workflow.

Developer Response The recommendation was applied in cases 1-3. The developers chose
not to make the recommended change for case 4.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

36 4 Vulnerability Report

4.1.21 V-CHAIN-VUL-021: Save gas in revert scenarios by using custom errors

Severity Info Commit 609ca8b
Type Gas Optimization Status Fixed

File(s) multiple
Location(s) multiple

Confirmed Fix At N/A

Using custom errors rather than require() and revert(string) reduces the gas cost of deploying
contracts and of reverting transactions. See: https://soliditylang.org/blog/2021/04/21/
custom-errors/

The revert(string) function is used at 3 locations in MerkleTrie.get().

There are 72 uses of the require() function across the following files:

▶ src/contracts/ERC20Safe.sol
▶ src/contracts/Router.sol
▶ src/contracts/handlers/ERCHandlerHelpers.sol
▶ src/contracts/handlers/FeeHandlerRouter.sol
▶ src/contracts/handlers/PermissionlessGenericHandler.sol
▶ src/contracts/handlers/fee/BasicFeeHandler.sol
▶ src/contracts/handlers/fee/PercentageERC20FeeHandlerEVM.sol
▶ src/contracts/libraries/Bytes.sol
▶ src/contracts/libraries/MerkleTrie.sol
▶ src/contracts/libraries/RLPReader.sol
▶ src/contracts/libraries/StorageProof.sol
▶ src/contracts/proxies/SpectreProxy.sol
▶ src/contracts/utils/AccessControl.sol
▶ src/contracts/utils/AccessControlSegregator.sol
▶ src/contracts/utils/Pausable.sol

Impact Excess gas cost at contract deployment and when reverting transactions.

Recommendation Replace uses of require() and revert(string) with revert statements that
use custom error types.

Developer Response The recommendation was applied in all cases.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

https://soliditylang.org/blog/2021/04/21/custom-errors/
https://soliditylang.org/blog/2021/04/21/custom-errors/

4.1 Detailed Description of Issues 37

4.1.22 V-CHAIN-VUL-022: Users can lose funds due to internal decimals conversion

Severity Info Commit 609ca8b
Type Data Validation Status Fixed

File(s) contracts/handlers/ERCHandlerHelpers.sol

Location(s) convertToInternalBalance()
Confirmed Fix At N/A

The ERCHandlerHelpers abstract contract contains functions that aid in bridging when one
side of the bridge is an ERC20 token. ERC20 tokens may hold their values according to a
different number of decimal places but the bridge needs to represent them consistently so it
uses 18 decimal places (this is a very common choice since it is the ratio of Ether and Wei).
The convertToInternalBalance() function converts values from the decimal places used by the
source ERC20 token to the 18 decimal places used internally by the bridge. This function is
called by ERC20Handler.deposit() while packing the data that is ultimately stored in the Deposit

event to be used by Relayers to complete the bridging.

1 function convertToInternalBalance(address tokenAddress, uint256 amount) internal view
returns (uint256) {

2 Decimals memory decimals = _tokenContractAddressToTokenProperties[tokenAddress].
decimals;

3 uint256 convertedBalance;
4 if (!decimals.isSet) {
5 return amount;
6 } else if (decimals.externalDecimals >= DEFAULT_DECIMALS) {
7 convertedBalance = amount / (10 ** (decimals.externalDecimals -

DEFAULT_DECIMALS));
8 } else {
9 convertedBalance = amount * (10 ** (DEFAULT_DECIMALS - decimals.

externalDecimals));
10 }
11

12 return convertedBalance;
13 }

Snippet 4.25: Definition of ERCHandlerHelpers.convertToInternalBalance()

The user of the bridge will lose funds if decimals.externalDecimals >= 18 and amount < (10 **

(decimals.externalDecimals - 18)), then the function will return 0 and that would ultimately
packed into the Deposit event. The Relayers are outside the scope of this audit but we assume
they would not produce any currency on the other side of the bridge for a deposit of 0.

Impact Users can lose funds.

Recommendation The contract should revert when the converted value is 0 because the
amount requested to bridge is too small.

Developer Response Applied the recommended fix.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

38 4 Vulnerability Report

4.1.23 V-CHAIN-VUL-023: getRoleMemberIndex() result is off by 1

Severity Info Commit 609ca8b
Type Logic Error Status Fixed

File(s) contracts/utils/AccessControl.sol

Location(s) getRoleMemberIndex()
Confirmed Fix At N/A

The AccessControl contract provides the getRoleMemberIndex() function to return the index
where the given account is stored for the given role.

1 function getRoleMemberIndex(bytes32 role, address account) public view returns (
uint256) {

2 return _roles[role].members._inner._indexes[bytes32(uint256(uint160(account)))];
3 }

Snippet 4.26: Definition of AccessControl.getRoleMemberIndex()

Here the reference _roles[role].members._inner refers to an instance of struct Set defined
in @openzeppelin/contracts/utils/structs/EnumerableSet.sol. The documentation for Set.

_indexes indicates that it maps each value to the "Position of the value in the values array, plus 1
because index 0 means a value is not in the set." Hence the value returned by getRoleMemberIndex

() is actually 1 greater than the index where the value is stored which implies getRoleMember(R,
getRoleMemberIndex(R,A)) != A.

There are no uses of this function within the scope of this audit but the auditors believe the
expected behavior would be getRoleMember(R, getRoleMemberIndex(R,A)) == A.

Impact Unexpected index may be returned which could end up allowing access in a case
where it should not be allowed, depending on actual usage.

Recommendation getRoleMemberIndex() should subtract 1 from the value before returning.

Developer Response Developers determined the function is not needed and replaced the
AccessControl contract entirely with the OpenZeppelin implemenation.

© 2024 Veridise Inc. Veridise Audit Report: Sygma

4.1 Detailed Description of Issues 39

4.1.24 V-CHAIN-VUL-024: Handle empty input to poseidon_hash_fq_array

Severity Info Commit ba3850e
Type Maintainability Status Fixed

File(s) lightclient-circuits/src/poseidon.rs

Location(s) multiple
Confirmed Fix At N/A

In lightclient-circuits/src/poseidon.rs the fq_array_poseidon() and poseidon_hash_fq_array

() functions expect a collection of items to perform the Poseidon hash over. In both functions, if
the input contains no elements, the function will panic with "called Option::unwrap() on a None
value" at the statement current_poseidon_hash.unwrap().

1 let mut current_poseidon_hash = None;
2 for (i, chunk) in limbs.chunks(POSEIDON_SIZE - 2).enumerate() {
3 poseidon.update(chunk);
4 if i != 0 {
5 poseidon.update(&[current_poseidon_hash.unwrap()]);
6 }
7 let _ = current_poseidon_hash.insert(poseidon.squeeze(ctx, gate));
8 }
9 Ok(current_poseidon_hash.unwrap())

Snippet 4.27: Excerpt from fq_array_poseidon()

Impact Panics on empty input with an unhelpful error message.

Recommendation Document why the empty input is not allowed and add an explicit assertion
for it.

Developer Response Applied the recommended fix.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

Fuzz Testing 5
5.1 Methodology

Our goal was to fuzz test Spectre, the Zero-Knowledge coprocessor within Sygma, to assess its
functional correctness (i.e, whether the implementation deviates from the intended behavior)
and potential crash states (i.e. whether it is possible to crash the process). We used AFL
(american fuzzy lop) as our fuzzer and wrote tests to setup and call several important functions
within Spectre. For functions implementing a common algorithm with a pre-existing Rust
implementation, we used that implementation as an oracle to verify that the Spectre function
produces the expected result. We used https://github.com/axiom-crypto/pse-poseidon

for the Poseidon oracle and https://crates.io/crates/sha2 for the Sha256 oracle.

5.2 Functions Fuzzed

Table 5.1 lists the functions we fuzz-tested in the first column. The second column shows the
number of compute-minutes that the fuzzer spent testing the function and the third indicates
the number of bugs identified while fuzzing the function.

Table 5.1: Fuzzing Summary.

Function Fuzzed Minutes Fuzzed Bugs Found
gadget::crypto::sha256_wide::Sha256ChipWide::digest 8,812 2
gadget::crypto::sha256_flex::Sha256Chip::digest 24,502 0
poseidon::fq_array_poseidon 20,820 1
ssz_merkle::ssz_merkleize_chunks 12,410 1
committee_update_circuit::CommitteeUpdateCircuit::synthesize 13,354 0
EndianConversions.toLittleEndian
EndianConversions.toLittleEndian64 a 2,514 0

TOTAL 82,412 4

a These are from the contracts folder of the Spectre repository and are written in Solidity. The body of each
function was copied over to a rust function and the ethnum crate was used to support the Solidity types.

The Veridise auditors devoted a total of 1,373 compute-hours to fuzzing this protocol, identifying
a total of 4 bugs which are described in V-CHAIN-VUL-007, V-CHAIN-VUL-008, V-CHAIN-
VUL-017, and V-CHAIN-VUL-024.

Veridise Audit Report: Sygma © 2024 Veridise Inc.

https://github.com/axiom-crypto/pse-poseidon
https://crates.io/crates/sha2

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-CHAIN-VUL-001: Missing subgroup check on public keys
	V-CHAIN-VUL-002: Missing check that the participation sum is greater than threshold
	V-CHAIN-VUL-003: Centralization Risk in Bridge
	V-CHAIN-VUL-004: State Root Verification in Spectre Proxy is Vulnerable to Preimage Attack
	V-CHAIN-VUL-005: Ineffective concurrency lock
	V-CHAIN-VUL-006: Aggregation Logic Could Reject Valid Signatures
	V-CHAIN-VUL-007: Sha256_wide digest assumes input length to be multiple of 4
	V-CHAIN-VUL-008: Sha256_wide digest panics when input has more than 64 elements
	V-CHAIN-VUL-009: Missing Address(0) check in Router and Bridge constructors
	V-CHAIN-VUL-010: transferHashes map written to but not read from
	V-CHAIN-VUL-011: Fee payout susceptible to wasted gas cost
	V-CHAIN-VUL-012: Missing Address(0) check in renounceAdmin() in BasicFeeHandler
	V-CHAIN-VUL-013: Using std::env::set_var is unsafe
	V-CHAIN-VUL-014: Integer casts may silently truncate
	V-CHAIN-VUL-015: X-Coordinate Aggregation could yield point at infinity
	V-CHAIN-VUL-016: Missing Input Validation
	V-CHAIN-VUL-017: ssz_merkleize_chunks crashes if sync committee size is not a power of 2
	V-CHAIN-VUL-018: Loss of precision due to floating point log2
	V-CHAIN-VUL-019: Maintainability Issues
	V-CHAIN-VUL-020: Gas Optimizations
	V-CHAIN-VUL-021: Save gas in revert scenarios by using custom errors
	V-CHAIN-VUL-022: Users can lose funds due to internal decimals conversion
	V-CHAIN-VUL-023: getRoleMemberIndex() result is off by 1
	V-CHAIN-VUL-024: Handle empty input to poseidon_hash_fq_array
	Fuzz Testing
	Methodology

	Methodology
	Functions Fuzzed

	Functions Fuzzed

